On Demand Webinar: How to better manage your data science team’s workflow

Download the Presentation On-demand

Streamline your machine learning projects

Scaling AI starts with proper management of data science teams. A common problem data science managers face is how to structure teams for efficiency and communicating results to business leaders. The hard part is streamlining the data science process to eliminate wait time, and easily transition between science and engineering, and business goals. While a standard agile has never been created for data science teams there are many methods that can make machine learning development easier. 

This workshop will give you the proper tools and tactics to manage the entire lifecycle of your machine learning projects, from research to exploration to development and production. Yochay will go over the different roles and responsibilities of a data science team and how to better collaborate on machine learning projects. You’ll learn to manage models, bridge between science and engineering, and save time with reproducible results. In addition, you’ll leave with the tools to more effectively communicate results to your business unit. 

What you’ll learn:

  • How to build a data science workflow for reproducibility
  • Model management and experiment tracking
  • Tools for easy collaboration
  • Tools to communicate results to business unit
  • How to transition between science and engineering

Streamline your machine learning projects

Scaling AI starts with proper management of data science teams. A common problem data science managers face is how to structure teams for efficiency and communicating results to business leaders. The hard part is streamlining the data science process to eliminate wait time, and easily transition between science and engineering, and business goals. While a standard agile has never been created for data science teams there are many methods that can make machine learning development easier. 

This workshop will give you the proper tools and tactics to manage the entire lifecycle of your machine learning projects, from research to exploration to development and production. Yochay will go over the different roles and responsibilities of a data science team and how to better collaborate on machine learning projects. You’ll learn to manage models, bridge between science and engineering, and save time with reproducible results. In addition, you’ll leave with the tools to more effectively communicate results to your business unit. 

What you’ll learn:

  • How to build a data science workflow for reproducibility
  • Model management and experiment tracking
  • Tools for easy collaboration
  • Tools to communicate results to business unit
  • How to transition between science and engineering
small_c_popup.png

Join the innovative enterprises using cnvrg.io to build, train & deploy their models faster.

schedule a demo today

Announcing CORE, a free ML Platform for the community to help data scientists focus more on data science and less on technical complexity

Download cnrvg CORE for Free

By submitting this form, I agree to cnvrg.io’s
privacy policy and terms of service.